Automatic detection of alarm sounds in a noisy hospital environment using model and non-model based approaches

نویسندگان

  • Ganna Raboshchuk
  • Sergi Gómez Quintana
  • Alex Peiró Lilja
  • Climent Nadeu
چکیده

Correspondence: [email protected] TALP Research Center, Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Spain †Corresponding author Abstract In the noisy acoustic environment of a Neonatal Intensive Care Unit (NICU) there is a variety of alarms, which are frequently triggered by the biomedical equipment. In this paper different approaches for automatic detection of those sound alarms are presented and compared: 1) a non-model-based approach that employs signal processing techniques; 2) a model-based approach based on neural networks; and 3) an approach that combines both non-model and model-based approaches. The performance of the developed detection systems that follow each of those approaches is assessed, analysed and compared both at the frame level and at the event level by using an audio database recorded in a real-world hospital environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN-EUL method for automatic interpretation of potential field data in unexploded ordnances (UXO) detection

We have applied an automatic interpretation method of potential data called AN-EUL in unexploded ordnance (UXO) prospective which is indeed a combination of the analytic signal and the Euler deconvolution approaches. The method can be applied for both magnetic and gravity data as well for gradient surveys based upon the concept of the structural index (SI) of a potential anomaly which is relate...

متن کامل

Automatic detection of equipment alarms in a neonatal intensive care unit environment: a knowledge-based approach

Alarm sounds triggered by biomedical equipment play a key role in providing healthcare in a neonatal intensive care unit (NICU). This paper presents our work on automatic detection of acoustic alarms in a noisy NICU environment, where knowledge about the particular characteristics of each alarm class is integrated at different stages of the detection system. The feature extraction is based on a...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

Automatic classification of Non-alcoholic fatty liver using texture features from ultrasound images

Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...

متن کامل

Automated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier

Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.04351  شماره 

صفحات  -

تاریخ انتشار 2017